
Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-

spin measurement

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 4417

(http://iopscience.iop.org/0305-4470/36/15/314)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 4417–4432 PII: S0305-4470(03)39284-4

Application of magnetic resonance force microscopy
cyclic adiabatic inversion for a single-spin
measurement

G P Berman1, F Borgonovi1,2,3,4, G Chapline1,5, S A Gurvitz1,6,
P C Hammel7, D V Pelekhov7, A Suter7 and V I Tsifrinovich8

1 Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, NM 177545,
USA
2 Dipartimento di Matematica e Fisica, Università Cattolica, via Trieste 17, 25121 Brescia, Italy
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Abstract
We consider the process of a single-spin measurement using magnetic
resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI).
This technique is also important for different applications, including a
measurement of a qubit state in quantum computation. The measurement
takes place through the interaction of a single spin with a cantilever modelled
by a quantum oscillator in a coherent state in a quasi-classical range of
parameters. The entire system is treated rigorously within the framework
of the Schrödinger equation. For a many-spin system our equations accurately
describe conventional MRFM experiments involving CAI of the spin system.

Our computer simulations of the quantum spin–cantilever dynamics show
that the probability distribution for the cantilever position develops two
asymmetric peaks with the total relative probabilities mainly dependent on
the initial angle between the directions of the average spin and the effective
magnetic field, in the rotating frame. We show that each of the peaks is
correlated with the direction of the average spin (being along or opposite to
the direction of the effective magnetic field). This generates two possible
outcomes of a single-spin measurement, similar to the Stern–Gerlach effect.
We demonstrate that the generation of the second peak can be significantly
suppressed by turning on adiabatically the amplitude of the rf magnetic field.
We also show that MRFM CAI can be used both for detecting a signal from a
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single spin, and for measuring the single-spin state by measuring the phase of
the cantilever driving oscillations.

PACS numbers: 03.67.Lx, 03.67.−a, 76.60.−k

1. Introduction

The problem of detecting a signal from a single electron and nuclear spin is extremely important
for successful development of future quantum technologies. One of these technologies is
quantum computation (see, for example, [1–6]). In solid-state quantum computers, a single
quantum bit (qubit) can be realized using different quantum two-level systems [7]. In particular,
a qubit can be represented by a nuclear [8, 9] or an electron [10–13] spin. To extract the
information from a quantum computer one must read out a state of a single qubit. This means
that one must at least measure a signal from a magnetic moment produced by a single spin.
Recently, there exist different proposals to realize a single-spin quantum measurement (see,
for example, [8, 9, 12, 14]). One of them is based on magnetic resonance force microscopy
(MRFM).

MRFM was first proposed by Sidles in 1991 as a sensitive method to detect a signal
from small magnetic samples [15]. Since this time, MRFM has been successfully used to
increase the sensitivity and spatial resolution for electron spin resonance [16], ferromagnetic
resonance [17], and nuclear magnetic resonance [18]. For a recent review on MRFM
see [19].

In conventional MRFM (see figure 1), a magnetic particle produces a non-uniform
magnetic field which attracts or repels the magnetic moment of a sample placed, in our
case, on a cantilever tip, depending on the direction of a magnetic moment. The magnetic
resonance technique in MRFM CAI provides two types of magnetic moment oscillation in
the reference frame which rotates with the rf field: the fast oscillation around the effective
magnetic field, and the slow oscillation with the cantilever frequency. These oscillations cause
resonant vibrations of the cantilever that can be detected, for example, using optical methods.

We would also like to mention here a connection between the MRFM CAI and the problem
of a ‘continuous’ measurement of a quantum system which means a continuous monitoring of
the dynamics of a macroscopic system caused by the dynamics of a quantum system (see, for
example, [20, 21]).

As a necessary step to approach the problems of a single-spin measurement using MRFM
CAI we perform a detailed quantum mechanical analysis of the coupling of a single spin to
a cantilever. We treat the measurement device (a quasi-classical cantilever) entirely quantum
mechanically together with a single spin as an isolated quantum system described by the
Schrödinger equation.

This pure quantum mechanical approach allows us to answer the following crucial
question: what spin projection is measured by a cantilever in MRFM CAI? Namely, in a
standard Stern–Gerlach experiment one measures the spin projection along the direction of
the magnetic field (the z-direction). At the same time, in the classical version of MRFM CAI
the magnetic moment of the sample is oriented along the direction of the effective magnetic
field that oscillates in the rotating reference frame (x–z plane). So, the central question is
whether in the quantum case the natural axis of the spin quantization is the direction of the
cantilever oscillations (the z-direction) or the direction of the oscillating magnetic field. Our
numerical simulations demonstrate that under the parameters used in MRFM CAI the axis of
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Figure 1. A schematic set-up of the spin–cantilever system. �B0 is the uniform permanent
magnetic field oriented in the positive z-direction; �B1 is the rotating magnetic field; �S is a single
spin (S = 1/2); �M is the magnetic moment of the ferromagnetic particle.

spin quantization is the direction of the oscillating effective magnetic field. This conclusion
is important because it means that the quantum version of MRFM CAI (in which a spin
is supposed to rotate fast around the effective magnetic field and to follow its oscillations
adiabatically) can be realized.

In section 2 we formulate the classical problem of the driven oscillations of the cantilever.
We then present its quantum mechanical equivalent for a spin–cantilever system in the
Schrödinger representation. The cantilever is prepared initially in a quantum coherent state
using parameters that place it in a quasi-classical regime. We show that these parameters
in the classical limit of a many-spin system correspond to real experimental conditions of
CAI. In section 3 we consider the quantum dynamics of a single spin–cantilever system when
the spin is rotated by CAI. Our computer simulations explicitly demonstrate the formation
of two distinctive peaks in the probability distribution of the cantilever position. These two
peaks are quasi-periodically overlapping with a period which matches that of the CAI of the
spin. In section 4 we show that each of the two peaks in the cantilever distribution involves a
superposition of both the stationary spin states. The average spin in one of the peaks is oriented
approximately in the direction of the effective magnetic field (in the rotating reference frame),
and in the other peak the average spin is oriented approximately in the direction opposite to
the direction of the effective magnetic field. This results in an unwanted effect—two possible
outcomes (quantum jump) of a single-spin measurement (similar to the Stern–Gerlach effect).
We show that turning on adiabatically the amplitude of the rf magnetic field can significantly
suppress the magnitude of one of the peaks (∼10−6 for chosen parameters). As shown in
section 5, this will allow one to use MRFM CAI not only for detecting a signal from a single
spin, but also for measuring a single-spin state by measuring the phase of the cantilever driving
oscillations. The summary of our results is presented in section 6.

2. Formulation of the model

Consider the cantilever–spin system shown in figure 1, namely, a single spin (S = 1/2) is
placed on the cantilever tip. The tip can oscillate only in the z-direction. The ferromagnetic
particle, whose magnetic moment points in the positive z-direction, produces a non-uniform
magnetic field at the spin. The uniform magnetic field, �B0, oriented in the positive z-direction,
determines the ground state of the spin. The rotating magnetic field, �B1, induces transitions
between the ground and the excited states of the spin. The origin is chosen to be the equilibrium
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position of the cantilever tip with no ferromagnetic particle. The rotating magnetic field can
be represented as

Bx = B1 cos(ωt + ϕ(t)) By = −B1 sin(ωt + ϕ(t)) (1)

where ϕ(t) describes a smooth change in phase required for a cyclic adiabatic inversion (CAI)
of the spin (|dϕ/dt| � ω).

The classical motion for the cantilever displacement, Z(x = lc, t) (where x is the
coordinate along the cantilever and lc the length of the cantilever), under the action of the
‘effective external harmonic force’ (EEHF), Fω eiωt , takes the form [22]

Z = 4

mc

∞∑
n=1

Fω

ω2
n − ω2

eiωt (2)

where mc is the mass of the cantilever. The summation in equation (2) is taken over all
eigen-frequencies of the cantilever. Neglecting all terms in equation (2) except for the first
one with n = 1, and taking into consideration the finite value of the quality factor, Q, of the
cantilever, we have from equation (2)

Z ≈ 4Fω/mc

ω2
c − ω2 + 2iω2/Q

eiωt (3)

where ωc is the lowest eigen-frequency of the cantilever.
Equation (3) describes the resonant enhancement of the classical oscillations by a quality

factor, Q. For the corresponding quantum mechanical treatment of the same cantilever–spin
system we introduce the Hamiltonian in the reference frame rotating with �B1,

H = P 2
z

2m∗
c

+
m∗

cω
2
cZ

2

2
− h̄

(
ωL − ω − dϕ

dt

)
Sz − h̄ω1Sx − gµ

∂Bz

∂Z
ZSz (4)

where we defined m∗
c = mc/4 as the effective cantilever mass. In equation (4), Z is the

coordinate of the oscillator which describes the dynamics of the cantilever tip; Pz is its
momentum,

ωc = (kc/m∗
c)

1/2 ωL = γBz ω1 = γB1 (5)

where Bz includes the uniform magnetic field, B0, and the magnetic field produced by the
ferromagnetic particle at the spin location (at z = 0); γ = gµ/h̄ is the gyromagnetic ratio of
the spin; Sz and Sx are the z- and the x-components of the spin; ωL is its Larmor frequency;
ω1 is the Rabi frequency (the frequency of the spin precession around the field B1 at the
resonance: ω = ωL, ϕ̇ = 0); g and µ are the g-factor and the nuclear magneton (or the Bohr
magneton in the case of an electron spin).

It is useful to rewrite the Hamiltonian (4) in the dimensionless form by introducing the
following ‘quanta’ of the oscillator (cantilever): energy (E0), force (F0), amplitude (Z0) and
momentum (P0),

E0 = h̄ωc F0 =
√

kcE0 Z0 =
√

E0/kc P0 = h̄/Z0. (6)

Using these dimensionless quantities and setting ω = ωL, Hamiltonian (4) reads

H′ = H/h̄ωc = (
p2

z + z2)/2 + ϕ̇Sz − εSx − 2ηzSz (7)

where

pz = Pz/P0 z = Z/Z0 ϕ̇ = dϕ/dτ τ = ωct

ε = ω1/ωc η = gµ(∂Bz/∂Z)/2Fc.
(8)
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Here ε and η in equation (8) are two dimensionless parameters which characterize the quantum
dynamics described by the Hamiltonian (7). In detail, ε is the dimensionless Rabi frequency,
while η is the dimensionless magnetic force produced by a single spin on the cantilever.

To estimate the ‘quanta’ in (6) and the dimensionless parameters in (8), we use parameters
from the MRFM measurement [18] of protons in ammonium nitrate,

ωc/2π = 1.4 × 103 Hz kc = 10−3 N m−1

B1 = 1.2 × 10−3 T ∂Bz/∂Z = 600 T m−1

γ /2π = 4.3 × 107 Hz T−1.

(9)

Using these values, we obtain

E0 = 9.2 × 10−31 J F0 = 3 × 10−17 N
Z0 = 3 × 10−14 m P0 = 3.5 × 10−21 kg m s−1

ε = 37 η = 2.8 × 10−7.

(10)

The dimensionless Schrödinger equation can be written in the form

i	̇ = H′	 (11)

where

	(z, τ ) =
(

ψ1(z, τ )

ψ2(z, τ )

)
(12)

is a dimensionless spinor, and 	̇ = ∂	/∂τ . Next, we expand the functions ψ1(z, τ ) and
ψ2(z, τ ) in terms of the eigenfunctions, |n〉, of the unperturbed oscillator Hamiltonian,(
p2

z + z2
)
/2,

ψ1(z, τ ) =
∞∑

n=0

An(τ)|n〉 ψ2(z, τ ) =
∞∑

n=0

Bn(τ)|n〉
(13)

|n〉 = π1/42n/2(n!)1/2 e−z2/2Hn(z)

where Hn(z) are the Hermitian polynomials. Substituting (13) in (11) and taking into account
(7), we derive the coupled system of equations for the complex amplitudes, An(τ) and Bn(τ),

iȦn = (n + 1/2 + ϕ̇/2)An − (η/
√

2)
(√

nAn−1 +
√

n + 1An+1
) − (ε/2)Bn

(14)
iḂn = (n + 1/2 + ϕ̇/2)Bn + (η/

√
2)

(√
nBn−1 +

√
n + 1Bn+1

) − (ε/2)An.

To derive equation (14), we used the well-known expressions for creation and annihilation
operators,

a|n〉 = √
n|n − 1〉 a†|n〉 =

√
n + 1|n + 1〉[(

p2
z + z2)/2

]|n〉 = (n + 1/2)|n〉
(15)

z = (a† + a)/
√

2 pz = i(a† − a)/
√

2

[a, a†] = 1.

To test our model, we considered the classical limit of the macroscopic number of spins
and the classical cantilever. For this purpose, we substitute the operators Sx and Sz by the sums
of operators over all spins in the sample. Neglecting the quantum correlation effects we derive
the classical equations of motion for the average spin of the sample and for the cantilever:

ż = pz ṗz = −z + 2η�NSz
�̇S = [ �S × �beff]. (16)

Here �beff is the effective magnetic field with components

beff
x = ε beff

y = 0 beff
z = −ϕ̈ + 2ηz (17)
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and �N is the difference in the population of the ground state and the excited state of the spin
system. Then to estimate the amplitude of the stationary vibrations of the cantilever within
the Hamiltonian approach, we put τ = Qc, where Qc is the quality factor of the cantilever.
(The value τ = Qc corresponds to the time t = tc, where tc = Qc/ωc is the time constant of
the cantilever.)

Taking parameters from the experiment [18]

�N = 2.9 × 109 Qc ≈ 103 (18)

we obtain for the stationary amplitude of the cantilever

z = �NηQc ≈ 8.1 × 105. (19)

The corresponding dimensional value of the amplitude is Z ≈ 24 nm. The experimental value
in [18] is 16 nm, which is close to the estimated value.

3. Quantum dynamics for a single spin–cantilever system

The magnetic force between the cantilever and a single spin is extremely small. To simulate
the dynamics of the cantilever driven by a single spin, in reasonable times, we take η = 0.3.
Such a value can already be achieved in the present day experiments by measuring a single
electron spin (see, for example, [19]).

To describe the cantilever as a sub-system close to the classical limit, we choose the
initial wavefunction of the cantilever in the coherent state, |α〉, in the quasi-classical region
of parameters (|α|2 
 1). Namely, the initial wavefunction of the cantilever was taken in the
form (12) where

ψ1(z, 0) =
∞∑

n=0

An(0)|n〉 ψ2(z, 0) = 0

(20)
An(0) = (αn/

√
n!) exp(−|α|2/2).

The initial averages of z and pz can be represented as

〈z〉 = 1√
2
(α∗ + α) 〈pz〉 = i√

2
(α∗ − α). (21)

In all numerical simulations we choose α = −√
2 × 10, which corresponds to the initial

average number of excitations in the cantilever: n = |α|2 = 200.
Note that the value |α| cannot be significantly reduced if we simulate a quasi-classical

cantilever. At the same time, increasing |α| increases the number of states, |n〉, involved in
the dynamics which makes the simulations of quantum dynamics more complicated.

We numerically integrated system (14) using a standard Runge–Kutta fourth-order
method. We checked the stability of our results increasing the dimension of the oscillator
basis (up to 3000 levels) and decreasing the time integration step.

Figure 2 shows the typical probability distribution

P(z, τ ) = |ψ1(z, τ )|2 + |ψ2(z, τ )|2 (22)

obtained from numerical simulations of equations (14) for six instants of time, τ , and for the
parameters η = 0.3 and ε = 400. (The dimensionless period, �τ = 2π , corresponds to the
dimensional period, �t = 2π/ωc.) This figure reveals that the cantilever can be found in
two different positions. Indeed, near τ = 80, the probability distribution (22) splits into two
asymmetric peaks. After this the separation between these two peaks varies periodically in
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Figure 2. Probability distribution of the cantilever coordinate, z, for ε = 400 and η = 0.3. The
initial conditions: z(0) ≡ 〈z〉 = −20, pz(0) ≡ 〈pz〉 = 0 (α = −√

2 × 10). Times are (a) τ = 0,
(b) τ = 20, (c) τ = 64.8 , (d) τ = 104, (e) τ = 160, (f ) τ = 221.6.

time. The ratio of the peak amplitudes is about 1000 for chosen parameters. (Hence, we show
the amplitudes on a logarithmic scale.) The cyclic adiabatic inversion parameters were chosen
as

ϕ̇ =
{−6000 + 300τ if τ � 20
A sin(τ − 20) if τ > 20

(23)

where A = 1000, so that the standard condition for CAI (|ϕ̈| � ε2) is satisfied. The chosen
parameters in equation (23) allow one to ‘catch’ the spin, initially oriented in the positive (or
negative) z-direction, by the effective magnetic field, and to put it approximately in the positive
(or negative) x-direction at τ = 20. For times τ > 20, the spin oscillates in the xz-plane,
together with the effective magnetic field.

It is clear that the small peak does not significantly influence the average coordinate
of the cantilever. Figure 3 shows the average coordinate of the cantilever, 〈z(τ )〉, and the
corresponding standard deviation, �(τ) = [〈z2〉 − 〈z〉2]1/2. One can see a fast increase in the
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Figure 3. Cantilever dynamics. (a) Average coordinate of the cantilever as a function of τ and
(b) its standard deviation �(τ) = [〈z2(τ )〉 − 〈z(τ )〉2]1/2. Data and parameters are the same as in
figure 2.

average amplitude of the cantilever vibrations, while the standard deviation still remains small.
This, in fact, is related to the initial conditions of the spin, which was taken in the direction
of the z-axis. For instance, if the spin initially points in the x-axis (ψ1(z, 0) = ψ2(z, 0)), our
calculations show two large peaks with similar amplitudes.

The two peaks in the cantilever probability distribution, shown in figure 2, indicate two
possible trajectories of the cantilever (similar to the Stern–Gerlach effect). As a result of
the consequent measurement of the cantilever position the system selects one of the two
trajectories.

4. Cantilever–spin entanglement

As shown in figure 2, two asymmetric peaks in the cantilever distribution are well separated for
shown instants of time. When the probability distribution splits into these peaks, the distance,
d, between them initially increases. Then d decreases so that the two peaks eventually
overlap. After this, the probability distribution splits again so that the position of the minor
peak is on the opposite side of the major peak. Again the distance, d, first increases, then
decreases until the two peaks overlap. This cycle repeats for as long as the simulations
are run.

One might expect that the two peaks are associated with the functions Pn(z, τ ) =
|ψn(z, τ )|2, n = 1, 2. In fact the situation is more subtle: each function Pn(z, τ ) splits into two
peaks. Figure 4 shows these two functions for nine instants in time: τk = 92.08 + 0.8k, k = 0,

1, . . . , 8 during one period of the cantilever vibration. One can see the splitting of both
P1(z, τ ) and P2(z, τ ); each peak of the function P1(z, τ ) has the same position as the two
peaks of P2(z, τ ), but the amplitudes of these peaks differ. For instance, for k = 1 (τ = 92.88)

the left-hand peak is dominantly composed of P1(z, τ ), while the right-hand peak is mainly
composed of P2(z, τ ).
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Figure 4. Probability distributions, P1(z, τ ) = |ψ1(z, τ )|2 (solid curves), and P2(z, τ ) =
|ψ2(z, τ )|2 (dashed curves) for nine instants of time: τk = 92.08 + 0.8k, k = 0, 1, . . . , 8.

92 93 94 95 96 97 98 99
τ

0

0.5

1

P11(τ)

P22(τ)

Figure 5. Integrated probability distributions of the spin z-components (diagonal components of
the spin density matrix): P11(τ ), for Sz = 1/2 (•); and P22(τ ), for Sz = −1/2 (◦), as functions
of time. Vertical arrows show the time instants, τk = 92.08 + 0.8k, k = 0, 1, . . . , 8 depicted in
figure 4.

Figure 5 shows the spatially integrated probability distributions: P11(τ ) = ∫
P1(z, τ ) dz

and P22(τ ) = ∫
P2(z, τ ) dz, as ‘truly continuous’ functions of time, τ . (Vertical arrows show

the time instants, τk .)
The crucial problem is the following: do the two peaks of the cantilever distribution

correspond to the definite spin states? To answer this question we studied the structure of
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Figure 6. Demonstration of the orthogonality of spin wavefunctions belonging to ‘big’ and ‘small’
peaks. (a) Circles: Re(−κψs

1), solid line: Re(ψs
2); (b) circles: Im(−κψs

1), solid line: Im(ψs
2);

(c) circles: Re(κψb
2 ), solid line: Re(ψb

1 ); (d ) circles: Im(κψb
2 ), solid line: Im(ψb

1 ), where
κ(τ = 76) = −2.9.

the wavefunction of the cantilever–spin system. As was already mentioned, both functions,
ψ1(z, τ ) and ψ2(z, τ ), contribute to each peak (see figure 4). When the two peaks are clearly
separated we can represent each of these functions as a sum of two terms, corresponding to
the ‘big’ and ‘small’ peaks,

ψ1,2(z, τ ) = ψb
1,2(z, τ ) + ψs

1,2(z, τ ). (24)

We have found that with accuracy up to 1% the ratio ψs
2(z, τ )

/
ψs

1(z, τ ) = −ψb
1 (z, τ )

/
ψb

2 (z, τ ) = κ(τ ), where κ(τ ) is a real function independent of z. Results are shown in figure 6,
for the same parameter as in figure 2, and for τ = 76 with κ(τ ) = −2.9 obtained by a best fit
procedure.

As a result, the total wavefunction can be represented in the form,

ψ(z, sz, τ ) = ψb(z, τ )χb(sz, τ ) + ψs(z, τ )χs(sz, τ ) (25)

where χb(sz, τ ) and χs(sz, τ ) are spin wavefunctions, which are orthogonal to each other.
Equation (25) shows that each peak in the probability distribution of the cantilever coordinate
corresponds to a definite spin wavefunction. We found that the average spin, 〈χb| �S|χb〉,
corresponding to the big peak, points in the direction of the vector (ε, 0,−dϕ/dτ ), whereas the
average spin, 〈χs | �S|χs〉, corresponding to the small peak, points in the opposite direction. In
figure 7, we demonstrate the direction of the effective magnetic field (thick arrow); the direction
of the average spin calculated using the χb(sz, τ ) wavefunction (thin arrow); and the direction
of the average spin calculated using the χs(sz, τ ) wavefunction (thin dashed arrow). This
can only be done when the probability distributions corresponding to the small and big peaks,
	b and 	s , are well separated in space. This is not the case in figures 4(c) and (g). In
these cases we represent the total average spin only (as a thin line) (see figures 7(c) and (g).
One should also take into account that the ‘lengths’ of the effective magnetic field and the
average spin of the small head have been renormalized respectively to the lengths 1 and
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Figure 7. The direction of the effective magnetic field (thick arrow) renormalized to the unit
length; the direction of the average spin calculated using the χb(sz, τ ) wavefunction (thin arrow);
and the direction of the average spin calculated using the χs(sz, τ ) wavefunction (thin dashed
arrow) renormalized to the length 1/2, in order to be plotted in the same picture. Times and
parameters as in figure 4. In (c) and (g) one single thin line has been drawn for the total average
spin. This is due to the spatial overlapping of the probability distributions corresponding to the
small and big peaks (see text).

1/2, in order to put them on the same scale (they are respectively a few order of magnitude
larger and smaller than the total average spin). The results presented in figure 7 allow one
a better understanding of the structure of the total wavefunction described by equations (24)
and (25).

Note that up to a small term, 2ηz, the vector

(ε, 0,−dϕ/dτ )

is the effective magnetic field acting on the spin. The ratio of the integrated probabilities( ∫
P(z, τ ) dz

)
for the small and big peaks (∼10−3 in figure 2) can be easily estimated as

tan2(�/2), where � is the initial angle between the effective field, (ε, 0,−dϕ/dτ ), and the
spin direction. Therefore, by measuring the cantilever vibrations, one finds the spin in a
definite state along or opposite to the effective magnetic field. Our numerical simulations for
such a new initial condition, i.e. when the average spin points along or opposite to the effective
field, are shown in figure 8. The probability distribution P(z, τ ) again shows two peaks but
the ratio of the integrated probabilities of these peaks is much less than in figure 2 (∼10−6).
Note that we used in figure 8 a larger scale on the y-axis than that in figure 2, in order to
show that the small peak is clearly beyond the unavoidable numerical errors (below 10−25 in
figure 8).

Thus for chosen parameters, the probability of the second peak in the cantilever position
generated by a single-spin measurement is small. This implies that the appearance of this
peak cannot prevent the amplification of the cantilever vibration amplitude, and therefore the
measurement of the state of a single spin.
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Figure 8. Probability distribution of the cantilever coordinate, z, for ε = 400 and η = 0.3. The
initial conditions: z(0) ≡ 〈z〉 = −20, pz(0) ≡ 〈pz〉 = 0 (α = −√

2 × 10), and the average spin
in the direction of the effective magnetic field.

So far, the described picture reminds us of the classical Stern–Gerlach effect in which the
cantilever measures the spin component not in the z-direction but along the effective magnetic
field. The appearance of the second peak, even if the average spin points initially in the
direction of the effective magnetic field, provides a difference with the Stern–Gerlach effect.
The origin of this peak is a small deviation from the adiabatic motion of the spin even at
large amplitude of the effective field, and the back reaction of the cantilever vibrations on the
spin.

5. Measuring a single-spin state

The next important question is the following: is it possible to use CAI MRFM not only to
detect a spin signal but also to measure the state of a single spin? We studied numerically
the phase of the cantilever vibrations when the initial spin points along or opposite to the
direction of the effective magnetic field. Our computer simulations show that the phases of
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Figure 9. Measurement of the single-spin state using the phase of the cantilever vibrations. For
the dynamics of 〈z(τ )〉 and 〈Sz(τ )〉 the solid line corresponds to the ‘big’ (classical) peak of the
cantilever distribution, and the dashed line corresponds to the ‘small’ (quantum) peak, renormalized
to similar amplitudes. At the bottom, the dynamics of the z-component of the effective field is
shown.

the cantilever vibrations for these two initial conditions are significantly different. When the
amplitude of the cantilever vibrations increases, the phase difference for two initial conditions
approaches π . Thus, the classical phase of the cantilever vibrations indicates the state of the
spin relative to the effective magnetic field.

In figure 9 we demonstrate the process of measurement of a single-spin state using the
phase of the cantilever vibrations. For the dynamics of 〈z(τ )〉 and 〈Sz(τ )〉 the solid curve
corresponds to the ‘big’ (classical) peak of the cantilever distribution, and the dashed curve
corresponds to the ‘small’ (quantum) peak. At the bottom, the dynamics of the z-component
of the effective field is shown. One can see that the solid curve of 〈Sz(τ )〉 is in phase
with the effective field component, beff

z (τ ). The phase difference of the cantilever vibrations
corresponding to the two peaks approaches π for large enough times.

In practical applications, it would be very desirable to use CAI MRFM for measurement
of the initial z-component of the spin. For this purpose, one should provide the initial
direction of the effective magnetic field to be the z-direction. Then, the initial z-component
of the spin will coincide with its component relative to the effective magnetic field. In our
computer simulations presented in figures 4–7 we have assumed an instantaneous increase of
the amplitude of the rf field, at τ = 0. This causes an initial angle between the directions of
the spin and the effective magnetic field, � ≈ ε/|dϕ/dτ | ≈ 0.07. To eliminate this initial
angle we simulated the quantum spin–cantilever dynamics for an adiabatic increase of the rf
field amplitude: ε = 20τ for τ � 20, and ε = 400 for τ > 20. The dependence for dϕ/dτ

was taken the same as in figures 4–7. The results of these simulations are qualitatively similar
to those presented in figures 2–4, but the integrated probability of the small peak was reduced
to its residual value ∼10−6.
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We should also mention that the detection (without measuring the state) of a single
electron spin in an atom can be used to determine the state of its nuclear spin [23, 24]. Such
a measurement is possible for an atom with a large hyperfine interaction in a high external
magnetic field, because the electron spin frequency of the atom depends on the state of its
nuclear spin.

Certainly, for any single-spin measurement the amplitude of the driven cantilever
vibrations must be greater than the amplitude of the thermo-mechanical noise. The amplitude
of the driven cantilever vibrations for a single-spin detection can be estimated as ηQcZc. The
amplitude of the thermo-mechanical noise is presented, for example, in [14],

Zrms = 2[kBT Qc�f/kcωc]1/2

where �f is the noise bandwidth. Thus, the minimum value of η for a single-spin measurement
can be estimated as

ηmin ∼ ω−1(kBT �f/h̄Qc)
1/2.

As an example, for the ultrathin cantilever reported in [25], with parameters

�f = 0.4 Hz ωc/2π = 1.7 kHz

Qc = 6700 kc = 6.5 × 10−6 N m−1

the value of ηmin is

ηmin ∼ 0.3
√

T .

For an electron spin this value corresponds to the magnetic field gradient (in tesla per
metre),

(∂B/∂Z)min = 2ηmin(kch̄ωc)
1/2/gµ ∼ 9 × 104

√
T

which is used in current experiments [26]. (Note that a detection of a single spin is connected
with the driven vibrations of the cantilever,and does not depend on the specific initial conditions
at the moment of ‘turning on’ the rotating magnetic field.)

The real problem of a single-spin detection is associated rather with the short spin
relaxation time at the close distance of the cantilever to the measured spin [26]. In our
estimation we assume that the spin relaxation time is greater than the time constant, tc, of the
cantilever. (For a cantilever reported in [25] this time is tc = Qc/ωc ≈ 0.6 s.) This problem
is awaiting solution.

We would emphasize that in this paper we did not discuss the exciting opportunity to
detect a Schrödinger-cat state for a quasi-classical cantilever. Indeed, the decoherence time
for such a state is very short. Following [27] the decoherence time, td , for a cantilever reported
in [25] can be estimated as

td/tc ∼ ωc

kckBT
(h̄/Zrms)

2 = (h̄ωc/2kBT )2(ωc/Qc�f ) ≈ 7 × 10−15/T 2.

Thus, for such ‘macroscopic’ parameters, the Schrödinger-cat state quickly transforms to a
statistical mixture [30, 31] of two spin states relative to the directions of the effective magnetic
field.

6. Summary

In conclusion, we have analysed the quantum effects in the single-spin measurement using
cyclic adiabatic inversion (CAI) to drive cantilever vibrations in magnetic resonance force
microscopy (MRFM). We investigated the quasi-classical cantilever interacting with a single
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spin using the Hamiltonian approach. We have shown that the spin–cantilever dynamics
generates two asymmetric peaks in the probability distribution of the cantilever coordinate
corresponding approximately to the directions of the spin along or opposite to the direction of
the effective magnetic field in the rotating frame.

We also have demonstrated that, in the regime of MRFM CAI, the cantilever measures
the spin projection along the direction of the oscillating effective field in the rotating reference
frame. When the components A and ϕ̇ of the effective magnetic field in equation (24), that are
responsible for CAI, are small in comparison with the effective field η|z| (and, correspondingly,
the conditions of CAI are violated) one will have a transition to the standard Stern–Gerlach
experiment. Namely, the Hamiltonian (7) will be reduced to

H = (
p2

z + z2
)/

2 − 2ηzSz (26)

which has been considered in [28]. (Note that the model (26) can be considered as a modified
Jaynes–Cummings model, see [29].) In this limit, the cantilever measures the projection of the
spin in the direction of the magnetic field (z-direction). So, one can conclude that, depending
on the system parameters, a cantilever is a device which measures the projection of the spin
either in the direction of the oscillating effective field (MRFM CAI) or in the z-direction
(Stern–Gerlach effect).

In this paper, we did not discuss the intriguing possibility of observing a Schrödinger-cat
state. Instead, we concentrated on a possibility of observing the resonant excitation of the
cantilever vibrations, driven by a single spin. We demonstrated by a direct computation of the
average cantilever position and its standard deviation as a function of time that the resonant
amplification of the cantilever oscillations is indeed possible (for the considered region of
the system parameters), despite the presence of the two peaks for the cantilever distribution
function. In fact, the standard deviation of the cantilever coordinate becomes large only when
the angle between the initial spin direction and the effective magnetic field approaches π/2.
In this case both peaks are approximately of equal size. However, after an observation of the
cantilever position, the system appears in one of the peaks, and the following evolution of
the cantilever coordinate shows again the resonant amplifications with a very small standard
deviation.

The interaction of the cantilever with an environment will not change our main conclusion.
Such an interaction will cause decoherence [30, 31], which transforms the linear superposition
of the cantilever states into a statistical mixture. It is clear that this effect, as well as the
thermal vibrations of the cantilever, cannot prevent an observation of the driven oscillations
of the cantilever if the corresponding rms amplitude exceeds the amplitude of the vibrational
noise. Another effect of the interaction with the environment is the finite quality factor, Qc, of
the cantilever, which puts the limit on the increase of the cantilever vibrations. The stationary
amplitude of the cantilever vibrations can be estimated in our Hamiltonian approach by putting
τ = Qc.

Finally, we mention two other possible techniques for the cyclic spin inversion in MRFM.
One of them is the standard Rabi technique. This assumes that in our notation dϕ/dτ = 0 and
ε = 1, i.e. the Rabi frequency equals the cantilever frequency. This technique seems to be
simpler than CAI MRFM. But the amplitude of the rf field, ε, must be much greater than the
effective field produced by the cantilever on the spin 2ηz � ε = 1. In this case, the force acting
on the cantilever is very small, and the amplification of the driven cantilever vibrations requires
a long time, i.e. a large cantilever quality factor. Another technique assumes the application of
short π-pulses which periodically change the direction of the spin in the time interval, which is
very short in comparison to the cantilever period [14]. If the time interval between successive
pulses equals half of the cantilever period, this technique provides a resonant amplification
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of the cantilever vibrations. Testing this technique in MRFM experiments is a challenging
problem. Our results on numerical simulations of the ‘short-pulsed’ MRFM technique will be
published elsewhere.
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